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Abstract
A canonical form for a matrix product state representation of a general finitely
correlated quantum state on a one-dimensional (finite or infinite) lattice is
proposed by exploring the gauge symmetry of the matrix product. This
representation is unique in the sense that it is the only one which generates
canonical forms for all reduced density matrices of the state.

PACS numbers: 03.67.Mn, 05.10.Cc

Finitely correlated states of one-dimensional interacting many-body quantum systems
[1–3] admit a very useful matrix product state (MPS) representation which has recently
been extensively explored for developing efficient renormalization group based numerical
methods (e.g. [4–6]). However, the MPS representation suffers from ambiguity which makes
numerical approximations potentially difficult to control. For example, when computing time
evolution in terms of MPS representation, e.g. by the time-evolved-block-decimation scheme
of Vidal [4], one has to truncate the MPS representation after each time step to a suitable small
and finite dimension, but this truncation may in general depend on the representation of MPS
as will be discussed below.

In this letter a unique canonical form of the MPS representation is proposed. This
particular representation is distinguished by the fact that it generates canonical forms1 of
all possible reduced density matrices of the state, with all possible divisions of the lattice.
For example, truncation of the auxiliary space in the proposed canonical representation will
produce minimal distortion of the spectra of reduced density matrices.

Let us consider a finitely correlated state � of a lattice of Nd-level quantum systems,
� ∈ C

dN

, which is distinguished by the fact that its components in any local basis can be
written in terms of matrix products

�α1,α2,...,αN
= 〈L|Aα1

1 A
α2
2 · · ·AαN

N |R〉, (1)

1 This means that matrix products over a part of the lattice are orthogonal eigenvectors of the reduced density matrix
corresponding to the complementary part of the lattice.

0305-4470/06/220357+04$30.00 © 2006 IOP Publishing Ltd Printed in the UK L357

http://dx.doi.org/10.1088/0305-4470/39/22/L02
http://stacks.iop.org/JPhysA/39/L357


L358 Letter to the Editor

with a pair of vectors |L〉, |R〉 ∈ C
D and a set of N × d matrices Aα

n ∈ C
D×D, n =

1, . . . , N, α = 1, . . . , d, acting in an auxiliary space of finite (and typically quite small)
dimensionality D. 2 The smallest dimension D for which such MPS representation of the state
� can be achieved is related to the largest possible rank of the reduced density matrix

ρ
(n)

(α1,...,αn),(β1,...,βn)
=

∑

γn+1,...,γN

�(α1,...,αn,γn+1,...,γN )�
∗
(β1,...,βn,γn+1,...,γN ), (2)

for all possible divisions n = 1, 2, . . . , N − 1, and consequently ln D is the upper bound on
their Von Neuman entropies. Let us first assume that the system length N is finite, whereas we
shall comment on the N = ∞ case at the end of the letter.

However, we note a great redundancy in parametrization (1), namely one should observe
that the same state � is generated,

�α1,α2,...,αN
= 〈L̃|Ãα1

1 Ã
α2
2 · · · ÃαN

N |R̃〉, (3)

by applying an arbitrary local gauge transformation of MPS data,

Ãα
n = Gn−1A

α
nG−1

n , (4)

〈L̃| = 〈L|G−1
0 , |R̃〉 = GN |R〉, (5)

where Gn, n = 0, 1, . . . , N , is an arbitrary set of invertible D × D matrices. In this letter we
propose to explore the gauge symmetry (4) and define a unique canonical MPS which directly
connects the data Ãα

n, |R̃〉, |L̃〉 to the spectra of the reduced density matrices ρ(n).
It is important to observe that MPS representation (1) does not in general explicitly

generate canonical forms for the reduced density matrices ρ(n). We explain this fact below.
Let us choose some ortho-normal basis {|j 〉, j = 1, 2, . . . , D} of C

D , and plugging the identity
1 = ∑D

j=1 |j 〉〈j | somewhere into (1) expresses our state � as

�α1,...,αN
=

D∑

j=1

�(L,n,j)
α1,...,αn

�(R,n,j)
αn+1,...,αN ,

∗
(6)

where �
(L,n,j)
α1,...,αn

:= 〈L|Aα1
1 · · · Aαn

n |j 〉, �
(R,n,j)
αn+1,...,αN

:= 〈R|AαN

N

† · · · Aαn+1
n+1

†|j 〉. Again, this is in
general not the Schmidt decomposition of the pure state � (1) with respect to division n,
the reason being that the D-tuple of states {�(a,n,j), j = 1, . . . , D}, where a = L,R, are
not orthogonal in general. A simple question which we pose here is whether there exists a
gauge transformation (4) such that (6) would indeed become Schmidt decompositions for all
partitions n, simultaneously. Indeed, as we show below the answer is positive and the solution
is unique, modulo spectral degeneracies; thus it may be justified to call it the canonical form
of an MPS.

Let us define, for each cut 1 � n � N −1,D×D Hermitian and non-negative covariance
matrices of the states �(a,n,j),

〈j ′|V L
n |j 〉 :=

∑

α1,...,αn

�(L,n,j ′)
α1,...,αn

∗
�(L,n,j)

α1,...,αn
, (7)

〈j ′|V R
n |j 〉 :=

∑

α1,...,αn

�(R,n,j ′)
αn+1,...,αN

∗
�(R,n,j)

αn+1,...,αN
, (8)

which can be efficiently recursively generated in terms of transfer operators

An(X) :=
d∑

α=1

Aα
nXAα

n
†
, A†

n(X) :=
d∑

α=1

Aα
n
†
XAα

n, (9)

2 Note that superscript α is an index and not a matrix power.
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namely

V L
n = A†

n

(
V L

n−1

)
, V L

1 = A†
1(|L〉〈L|), (10)

V R
n = An+1

(
V R

n+1

)
, V R

N−1 = AN(|R〉〈R|). (11)

The reduced density matrix (2) can now be expressed as

ρ
(n)

(α1,...,αn),(β1,...,βn)
=

D∑

j,j ′=1

�(L,n,j ′)
α1,...,αn

〈j ′|V R
n |j 〉�(L,n,j)

β1,...,βn

∗ (12)

and, similarly, by interchanging the indices L and R, for the complementary reduced density
matrix where we trace over the left part.

Our main proposition will be based on the following observation. The non-vanishing
part of the spectrum of ρ(n) agrees with the non-vanishing part of the spectrum of the matrix
V L

n V R
n , or in other words, for any positive integer p, the spectral moments are the same

tr(ρ(n))p = tr
(
V L

n V R
n

)p
. (13)

This can be proven by recursive applications of equation (12) and using definitions (10),(11).
For example, the normalization of the state can be expressed as ‖�‖2 = tr V L

n V R
n , for any n.

The question is whether the products V L
n V R

n can be put in a simple, e.g. diagonal, form by
a suitable gauge transformation (4). The transformation of covariance matrices can be derived
straightforwardly

Ṽ L
n = G−†

n V L
n G−1

n , (14)

Ṽ R
n = GnV

R
n G†

n, (15)

where we write G
−†
n := (

G−1
n

)†
. Even though each covariance matrix separately does not

transform according to a similarity transformation, their products do,

Ṽ L
n Ṽ R

n = G−†
n V L

n V R
n G†

n, (16)

Ṽ R
n Ṽ L

n = GnV
R
n V L

n G−1
n . (17)

It is straightforward to prove that the product of non-negative Hermitian matrices is always
diagonalizable3, so we choose Gn, n = 1, . . . , N − 1, to be the matrix which transforms the
product (17) into the diagonal form. Then, automatically, the other product (16) is diagonalized
by G

−†
n , so it follows that both Ṽ L

n and R̃L
n should be diagonal, Ṽ a

n = diag
{
van,j ; j =

1, 2 . . . , D
}
. But in fact, only the product of eigenvalues vL

n,j v
R
n,j has a physical meaning,

namely it is precisely the eigenvalue of the reduced density matrix ρ(n).
Note that with equation (17) the matrix Gn remains unspecified up to a left multiplication

with an arbitrary non-degenerate diagonal transformation. This freedom we can use to make
the diagonal covariance matrices strictly equal Ṽ L

n = Ṽ R
n provided the matrices V L

n , V R
n were

strictly positive (non-degenerate).4 For example, for a practical numerical computation, one
would first diagonalize the following positive Hermitian matrix,

(
V L

n

)1/2
V R

n

(
V L

n

)1/2 = UnKnU
†
n, (18)

3 For strictly positive covariance matrices this is trivial, since V L
n V R

n ∼ (V L
n )1/2V R

n (V L
n )1/2, but in the case of

non-trivial null spaces one can show explicitly that non-trivial Jordan blocks for eigenvalue 0 are prohibited.
4 This is expected to be a typical situation for minimal dimension D allowed for a given state and sufficiently far
from the edges, namely when dn, dN−n+1 > D.
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where Un is unitary, and Kn is diagonal. Then we set

Gn = K−1/4
n U †(V L

n

)1/2
(19)

and we have, using (14),(15),

Ṽ L
n = Ṽ R

n = K1/2
n . (20)

The boundary gauge matrices, G0 and Gn, which are still free, may always be chosen (5) to
simplify the boundary states |L̃〉 = |R̃〉 = |1〉.

At the end, let us briefly comment on the case of translationally invariant states in infinite
systems, N = ∞, Aα

n ≡ Aα . Then one has to consider the canonization described above just
for one pair of covariance matrices which are given as maximal eigenvalue (1, if the state is
normalized) eigenvectors of the transfer operators A,A†, or in practical calculations, as limits

V L = lim
n→∞

1

nr−1
A†n(|L〉〈L|), V R = lim

n→∞
1

nr−1
An(|R〉〈R|), (21)

where r is the size of the Jordan block of the maximal eigenvalue, since in general a super-
matrix of the transfer operator A may be defective. For example, r = 1 for the GHZ state � =
2−1/2(|00 . . .〉 + |11 . . .〉), r = 2 for W-state � = limN→∞ N−1/2(|100 . . .〉 + |010 . . .〉 + · · ·),
etc. Since now the canonizing gauge transformation is global, Gn = G, one has no freedom
in selection of the boundary states |L̃〉, |R̃〉.
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